A data preparation approach for cloud storage based on containerized parallel patterns
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 11874 LNCS, Page: 478-490
2019
- 11Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In this paper, we present the design, implementation, and evaluation of an efficient data preparation and retrieval approach for cloud storage. The approach includes a deduplication subsystem that indexes the hash of each content to identify duplicated data. As a consequence, avoiding duplicated content reduces reprocessing time during uploads and other costs related to outsource data management tasks. Our proposed data preparation scheme enables organizations to add properties such as security, reliability, and cost-efficiency to their contents before sending them to the cloud. It also creates recovery schemes for organizations to share preprocessed contents with partners and end-users. The approach also includes an engine that encapsulates preprocessing applications into virtual containers (VCs) to create parallel patterns that improve the efficiency of data preparation retrieval process. In a study case, real repositories of satellite images, and organizational files were prepared to be migrated to the cloud by using processes such as compression, encryption, encoding for fault tolerance, and access control. The experimental evaluation revealed the feasibility of using a data preparation approach for organizations to mitigate risks that still could arise in the cloud. It also revealed the efficiency of the deduplication process to reduce data preparation tasks and the efficacy of parallel patterns to improve the end-user service experience.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85075907577&origin=inward; http://dx.doi.org/10.1007/978-3-030-34914-1_45; http://link.springer.com/10.1007/978-3-030-34914-1_45; http://link.springer.com/content/pdf/10.1007/978-3-030-34914-1_45; https://dx.doi.org/10.1007/978-3-030-34914-1_45; https://link.springer.com/chapter/10.1007/978-3-030-34914-1_45
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know