Stress Compensation Method for Shakedown Analysis and Its Engineering Applications
Lecture Notes in Applied and Computational Mechanics, ISSN: 1860-0816, Vol: 95, Page: 137-166
2021
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
This paper introduces a recently proposed direct method, the so-called stress compensation method (SCM), for shakedown analysis of engineering structures under variable repeated mechanical and thermal loads. Instead of establishing the mathematical programming formulation, the SCM performs a two-level iterative procedure based on a series of linear finite element (FE) solutions. By adding an extra stress (named the compensation stress) to the yield regions which may occur at every load vertex of the given loading domain to adjust the total stress to the yield surface and re-solving the equilibrium equations, the residual stress field for static shakedown analysis is constructed. An effective and robust iteration control scheme is presented to check the change of the compensation stress in the inner loop and to update the shakedown load multiplier in the outer loop. The numerical scheme of this method is successfully implemented into the Abaqus platform, which makes it become a general utility tool for shakedown analysis of complex structures. Numerous examples related to pressure vessel and power plant engineering are presented to illustrate the performance of the method for shakedown analysis of large-scale engineering structures under multi-dimensional loading domain.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85090098929&origin=inward; http://dx.doi.org/10.1007/978-3-030-48834-5_8; http://link.springer.com/10.1007/978-3-030-48834-5_8; http://link.springer.com/content/pdf/10.1007/978-3-030-48834-5_8; https://dx.doi.org/10.1007/978-3-030-48834-5_8; https://link.springer.com/chapter/10.1007/978-3-030-48834-5_8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know