Transfer learning using convolutional neural network architectures for brain tumor classification from MRI images
IFIP Advances in Information and Communication Technology, ISSN: 1868-422X, Vol: 583 IFIP, Page: 189-200
2020
- 94Citations
- 114Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Brain tumor classification is very important in medical applications to develop an effective treatment. In this paper, we use brain contrast-enhanced magnetic resonance images (CE-MRI) benchmark dataset to classify three types of brain tumor (glioma, meningioma and pituitary). Due to the small number of training dataset, our classification systems evaluate deep transfer learning for feature extraction using nine deep pre-trained convolutional Neural Networks (CNNs) architectures. The objective of this study is to increase the classification accuracy, speed the training time and avoid the overfitting. In this work, we trained our architectures involved minimal pre-processing for three different epoch number in order to study its impact on classification performance and consuming time. In addition, the paper benefits acceptable results with small number of epoch in limited time. Our interpretations confirm that transfer learning provides reliable results in the case of small dataset. The proposed system outperforms the state-of-the-art methods and achieve 98.71% classification accuracy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85086239075&origin=inward; http://dx.doi.org/10.1007/978-3-030-49161-1_17; https://link.springer.com/10.1007/978-3-030-49161-1_17; https://dx.doi.org/10.1007/978-3-030-49161-1_17; https://link.springer.com/chapter/10.1007/978-3-030-49161-1_17
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know