PlumX Metrics
Embed PlumX Metrics

Clinical Decision Support Systems for Predicting Patients Liable to Acquire Acute Myocardial Infarctions

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 12068 LNCS, Page: 622-634
2020
  • 2
    Citations
  • 0
    Usage
  • 6
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Conference Paper Description

Acute myocardial infarction (AMI) is a major cause of death worldwide. There are around 0.8 million persons suffered from AMI annually in the US and the death rate reaches 27%. The risk factors of AMI were reported to include hypertension, family history, smoking habit, diabetes, serenity, obesity, cholesterol, alcoholism, coronary artery disease, etc. In this study, data acquired from a subset of the National Health Insurance Research Database (NHIRD) of Taiwan were used to develop the clinical decision support system (CDSS) for predicting AMI. Support vector machine integrated with genetic algorithm (IGS) was adopted to design the AMI prediction models. Data of 6087 AMI patients and 6087 non-AMI patients, each includes 50 features, were acquired for designing the predictive models. Tenfold cross validation and three objective functions were used for obtaining the optimal model with best prediction performance during training. The experimental results show that the CDSSs reach a prediction performance with accuracy, sensitivity, specificity, and area under ROC curve (AUC) of 81.47–84.11%, 75.46–80.94%, 86.48–88.21%, and 0.8602–0.8935, respectively. The IGS algorithm and comorbidity-related features are promising in designing strong CDSS models for predicting patients who may acquire AMI in the near future.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know