Smart Shepherding: Towards Transparent Artificial Intelligence Enabled Human-Swarm Teams
Unmanned System Technologies, ISSN: 2523-3742, Page: 1-28
2021
- 7Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
The aim of this chapter is to uncover the beauty and complexity in the world of shepherding as we view it through the lens of Artificial Intelligence (AI) and Autonomous Systems (AS). In the pursuit of imitating human intelligence, AI researchers have made significant and vast contributions over decades. Yet even with such interest and activity from within industry and the academic community, general AI remains out of our reach. By comparison, this book aims for a less ambitious goal in trying to recreate the intelligence of a sheepdog. As our efforts display, even with this seemingly modest goal, there is a plethora of research opportunities where AI and AS still have a long way to go. Let us start this journey by asking the basic questions: what is shepherding and what makes shepherding an interesting problem? How does one design a smart shepherd for swarm guidance? What AI algorithms are required and how are they organised in a cognitive architecture to enable a smart shepherd? How does one design transparent AI for smart shepherding?
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85135567908&origin=inward; http://dx.doi.org/10.1007/978-3-030-60898-9_1; http://link.springer.com/10.1007/978-3-030-60898-9_1; http://link.springer.com/content/pdf/10.1007/978-3-030-60898-9_1; https://dx.doi.org/10.1007/978-3-030-60898-9_1; https://link.springer.com/chapter/10.1007/978-3-030-60898-9_1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know