Solving Inverse Problems for Process-Structure Linkages Using Asynchronous Parallel Bayesian Optimization
Minerals, Metals and Materials Series, ISSN: 2367-1696, Vol: 5, Page: 481-492
2021
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Conference Paper Description
Process-structure linkage is one of the most important topics in materials science due to the fact that virtually all information related to the materials, including manufacturing processes, lies in the microstructure itself. Therefore, to learn more about the process, one must start by thoroughly examining the microstructure. This gives rise to inverse problems in the context of process-structure linkages, which attempt to identify the processes that were used to manufacturing the given microstructure. In this work, we present an inverse problem for structure-process linkages which we solve using asynchronous parallel Bayesian optimization which exploits parallel computing resources. We demonstrate the effectiveness of the method using kinetic Monte Carlo model for grain growth simulation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85104385778&origin=inward; http://dx.doi.org/10.1007/978-3-030-65261-6_44; https://link.springer.com/10.1007/978-3-030-65261-6_44; https://dx.doi.org/10.1007/978-3-030-65261-6_44; https://link.springer.com/chapter/10.1007/978-3-030-65261-6_44
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know