PlumX Metrics
Embed PlumX Metrics

Applying fuzzy pattern trees for the assessment of corneal nerve tortuosity

Fuzzy Logic: Recent Applications and Developments, Page: 131-143
2021
  • 0
    Citations
  • 0
    Usage
  • 4
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Book Chapter Description

The tortuosity of corneal nerve fibers is correlated with a number of diseases such as diabetic neuropathy. The assessment of corneal nerve tortuosity level in in vivo confocal microscopy (IVCM) images can inform the detection of early diseases and further complications. With the aim to assess the corneal nerve tortuosity accurately as well as to extract knowledge meaningful to ophthalmologists, this chapter proposes a fuzzy pattern tree-based approach for the automated grading of corneal nerves' tortuosity based on IVCM images. The proposed method starts with the deep learning-based image segmentation of corneal nerves and then extracts several morphological tortuosity measurements as features for further processing. Finally, the fuzzy pattern trees are constructed based on the extracted features for the tortuosity grading. Experimental results on a public corneal nerve data set demonstrate the effectiveness of fuzzy pattern tree in IVCM image tortuosity assessment.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know