Coenzyme Q biosynthesis disorders
Mitochondrial Diseases: Theory, Diagnosis and Therapy, Page: 143-190
2021
- 2Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Coenzyme Q (CoQ) is a lipidic molecule that transfers electrons between complexes I and II to complex III in the mitochondrial respiratory chain. It is also essential for processes mediated by other mitochondrial dehydrogenases, such as those involved in pyrimidine nucleotides biosynthesis, beta-oxidation and sulfide biosynthesis. A nuclear-encoded multiprotein complex at the inner mitochondrial membrane drives CoQ biosynthesis, which requires at least 13 proteins, leastways in yeasts. Mutations in the genes (COQ genes) coding for these proteins cause a decrease of CoQ biosynthesis rate leading to primary CoQ deficiency, a very heterogeneous group of mitochondrial diseases affecting different tissues and organs, and showing variable severity and age of onset. In general, this primary condition shows a good response to the supplementation with high doses of CoQ, but early diagnosis is compulsory to limit tissue damage. However, sometimes effectiveness is reduced, possibly due to its low bioavailability and, probably, difficulties crossing the blood-brain barrier. Secondary CoQ deficiency is a more common condition, in which defects of diverse mitochondrial processes induce an adaptive CoQ decrease. Secondary deficiency can be caused by oxidative phosphorylation (OXPHOS) defects, such as complex III dysfunction or mitochondrial DNA (mtDNA) depletion, or even non-OXPHOS mitochondrial defects. Here, we review the current knowledge of CoQ biosynthesis pathway, the genetic defects leading to primary deficiency and those conditions in which mitochondrial defects cause secondary deficiency.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85124357623&origin=inward; http://dx.doi.org/10.1007/978-3-030-70147-5_6; https://link.springer.com/10.1007/978-3-030-70147-5_6; https://link.springer.com/content/pdf/10.1007/978-3-030-70147-5_6; https://dx.doi.org/10.1007/978-3-030-70147-5_6; https://link.springer.com/chapter/10.1007/978-3-030-70147-5_6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know