Emerging Lipid-Coated Silica Nanoparticles for Cancer Therapy
Nanotechnology in the Life Sciences, ISSN: 2523-8035, Page: 335-361
2021
- 3Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Siliceous nanomaterials are attractive candidates for applications in cancer theranostics due to their precise synthesis control, ease of surface functionalization, accuracy of characterization, controllable release of cargo, and predictable pharmacokinetics. However, the inorganic silica core inherent to these nanomaterials has colloidal instability and can be cytotoxic, presenting notable challenges for their clinical translation. Surface coatings may be used to overcome this hurdle, by improving their stability, safety, and biological activity and thereby supporting their development for various biomedical applications. Out of the various surface coatings tested to date, lipid-based coatings have shown notable potential due to their biocompatibility and low immunogenicity, where lipids have demonstrated clinical success in the form of liposomal drug delivery systems. In this chapter, we will discuss lipid-coated siliceous nanomaterials, with an emphasis on the principles of lipid coating, the enhanced biocompatibility brought about by the lipid shell, and the use of lipid-coated silica nanoparticles in cancer therapy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85117134492&origin=inward; http://dx.doi.org/10.1007/978-3-030-74330-7_12; https://link.springer.com/10.1007/978-3-030-74330-7_12; https://link.springer.com/content/pdf/10.1007/978-3-030-74330-7_12; https://dx.doi.org/10.1007/978-3-030-74330-7_12; https://link.springer.com/chapter/10.1007/978-3-030-74330-7_12
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know