Biohybrid Microrobots
Field-Driven Micro and Nanorobots for Biology and Medicine, Page: 304-347
2021
- 1Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Thanks to millions of years of evolution, living beings have developed complex mechanisms for sensing, actuation, and adaptation to the surrounding environment. Biohybrid robots exploit these mechanisms by embedding living components and combining them with nonliving elements. This allows overcoming some of the issues affecting entirely artificial devices, such as difficult scalability to small scales, inability to self-heal, and possible immunogenicity. In this chapter, biohybrid microrobots based on bacteria or other single cells (e.g., sperm cells, erythrocytes, neutrophils) are described. The most relevant examples reported in the state-of-the-art are analyzed, focusing on their specific sensing and actuation mechanisms. Relying on the use of a complete and autonomous living organism, they must be considered examples of a top-down approach, which needs to find ways of adequately controlling them. Specific applications of these systems are also described, with a particular focus on clinical ones. Then, muscle-based multicellular robots are introduced. Such systems are based on a bottom-up approach, through which single contractile units (skeletal muscle cells, cardiomyocytes, or insect-derived cells) are assembled and integrated with materials supporting them, to achieve effective locomotion and other functions. The main applications and challenges related to multicellular biohybrid microrobots are described, mentioning among others, modeling issues and the need for implementing multiple degrees of freedom, yet keeping high controllability by an external user.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85158987320&origin=inward; http://dx.doi.org/10.1007/978-3-030-80197-7_13; https://link.springer.com/10.1007/978-3-030-80197-7_13; https://dx.doi.org/10.1007/978-3-030-80197-7_13; https://link.springer.com/chapter/10.1007/978-3-030-80197-7_13
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know