Performance Evaluation of Classical Classifiers and Deep Learning Approaches for Polymers Classification Based on Hyperspectral Images
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 12862 LNCS, Page: 281-292
2021
- 8Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Plastics are very valuable material for their desirable characteristics being one of them, their durability. But this characteristic turns plastics into an environmental problem when they end in the environment, and they become one source of contamination that can last for centuries. Thus, the first step for effective recycling is to identify correctly the types of plastics. In this paper, different classical classifiers as Random Forest, KNN, or SVM are compared with 1-D CNN and LSTM to classify plastics from hyperspectral images. Also, Partial Least Squares Discriminant Analysis has been included as the baseline because is one of the most widely used classifiers in the field of the Chemometrics community. The images were preprocessed with several techniques as Standard Normal Variate or Savitzky-Golay Polynomial Derivative to compare their effectiveness with raw data with the classifiers. The experiments were carried out using hyperspectral images with a 240 bands spectrum, and six types of polymers were considered (PE, PA, PP, PS, PVC, EPS). The best results were obtained with SVM+RBF and 1-D CNN with an accuracy of 99.41% and 99.31% respectively, preprocessing the images previously with Standard Normal Variate. Also, PCA and t-SNE methods were tested for dimensionality reduction, but they don’t improve the classifier performance.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85115156321&origin=inward; http://dx.doi.org/10.1007/978-3-030-85099-9_23; https://link.springer.com/10.1007/978-3-030-85099-9_23; https://link.springer.com/content/pdf/10.1007/978-3-030-85099-9_23; https://dx.doi.org/10.1007/978-3-030-85099-9_23; https://link.springer.com/chapter/10.1007/978-3-030-85099-9_23
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know