Foundations of Time Series Analysis
Acta Neurochirurgica, Supplementum, ISSN: 2197-8395, Vol: 134, Page: 215-220
2022
- 1Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
For almost a century, classical statistical methods including exponential smoothing and autoregression integrated moving averages (ARIMA) have been predominant in the analysis of time series (TS) and in the pursuit of forecasting future events from historical data. TS are chronological sequences of observations, and TS data are therefore prevalent in many aspects of clinical medicine and academic neuroscience. With the rise of highly complex and nonlinear datasets, machine learning (ML) methods have become increasingly popular for prediction or pattern detection and within neurosciences, including neurosurgery. ML methods regularly outperform classical methods and have been successfully applied to, inter alia, predict physiological responses in intracranial pressure monitoring or to identify seizures in EEGs. Implementing nonparametric methods for TS analysis in clinical practice can benefit clinical decision making and sharpen our diagnostic armory.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85120874960&origin=inward; http://dx.doi.org/10.1007/978-3-030-85292-4_25; http://www.ncbi.nlm.nih.gov/pubmed/34862545; https://link.springer.com/10.1007/978-3-030-85292-4_25; https://dx.doi.org/10.1007/978-3-030-85292-4_25; https://link.springer.com/chapter/10.1007/978-3-030-85292-4_25
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know