Aeon 2021: Bifurcation Decision Trees in Boolean Networks
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 12881 LNBI, Page: 230-237
2021
- 2Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Aeon is a recent tool which enables efficient analysis of long-term behaviour of asynchronous Boolean networks with unknown parameters. In this tool paper, we present a novel major release of Aeon (Aeon 2021) which introduces substantial new features compared to the original version. These include (i) enhanced static analysis functionality that verifies integrity of the Boolean network with its regulatory graph; (ii) state-space visualisation of individual attractors; (iii) stability analysis of network variables with respect to parameters; and finally, (iv) a novel decision-tree based interactive visualisation module allowing the exploration of complex relationships between parameters and network behaviour. Aeon 2021 is open-source, fully compatible with SBML-qual models, and available as an online application with an independent native compute engine responsible for resource-intensive tasks. The paper artefact is available via https://doi.org/10.5281/zenodo.5008293.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85115991655&origin=inward; http://dx.doi.org/10.1007/978-3-030-85633-5_14; https://link.springer.com/10.1007/978-3-030-85633-5_14; https://dx.doi.org/10.1007/978-3-030-85633-5_14; https://link.springer.com/chapter/10.1007/978-3-030-85633-5_14
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know