Ultrasound Video Transformers for Cardiac Ejection Fraction Estimation
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 12906 LNCS, Page: 495-505
2021
- 35Citations
- 41Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Cardiac ultrasound imaging is used to diagnose various heart diseases. Common analysis pipelines involve manual processing of the video frames by expert clinicians. This suffers from intra- and inter-observer variability. We propose a novel approach to ultrasound video analysis using a transformer architecture based on a Residual Auto-Encoder Network and a BERT model adapted for token classification. This enables videos of any length to be processed. We apply our model to the task of End-Systolic (ES) and End-Diastolic (ED) frame detection and the automated computation of the left ventricular ejection fraction. We achieve an average frame distance of 3.36 frames for the ES and 7.17 frames for the ED on videos of arbitrary length. Our end-to-end learnable approach can estimate the ejection fraction with a MAE of 5.95 and R of 0.52 in 0.15 s per video, showing that segmentation is not the only way to predict ejection fraction. Code and models are available at https://github.com/HReynaud/UVT.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85116477759&origin=inward; http://dx.doi.org/10.1007/978-3-030-87231-1_48; https://link.springer.com/10.1007/978-3-030-87231-1_48; https://dx.doi.org/10.1007/978-3-030-87231-1_48; https://link.springer.com/chapter/10.1007/978-3-030-87231-1_48
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know