Multiorder Laplacian for Kuramoto Dynamics with Higher-Order Interactions
Understanding Complex Systems, ISSN: 1860-0840, Page: 233-247
2022
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Book Chapter Description
Many real-world systems are characterised by higher-order interactions, where influences among units involve more than two nodes at a time, and which can significantly affect the emergence of collective behaviors. A paradigmatic case is that of synchronization, occuring when oscillators reach coherent dynamics through their mutual couplings, and which is known to display richer collective phenomena when connections are not limited to simple dyads. Here, we consider an extension of the Kuramoto model with higher-order interactions, where oscillators can interact in groups of any size, arranged in any arbitrary complex topology. We present a new operator, the multiorder Laplacian, which allows us to treat the system analytically and that can be used to assess the stability of synchronization in general higher-order networks. Our spectral approach, originally devised for Kuramoto dynamics, can be extended to a wider class of dynamical processes beyond pairwise interactions, advancing our quantitative understanding of how higher-order interactions impact network dynamics.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85129174778&origin=inward; http://dx.doi.org/10.1007/978-3-030-91374-8_9; https://link.springer.com/10.1007/978-3-030-91374-8_9; https://dx.doi.org/10.1007/978-3-030-91374-8_9; https://link.springer.com/chapter/10.1007/978-3-030-91374-8_9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know