Pollen Recognition and Classification Method Based on Local Binary Pattern
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, ISSN: 1867-822X, Vol: 424 LNICST, Page: 532-539
2022
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Conference Paper Description
Aiming at the problem of low resolution and small sample size of pollen images, this paper proposes a pollen image classification method based on local binary mode. This method first performs preprocessing such as sharpening and normalization on the pollen image. For the preprocessed image, calculate the local binary pattern. Then extract the directional gradient histogram operator of the local binary pattern calculation result as the identification feature. And finally, use the SVM as the classifier for the classification and recognition of the three-dimensional pollen image. Through the experiment on the European Confocal standard pollen database, the results show that the recognition rate of this method can exceed 95% at the highest, and at the same time, it has better robustness to the proportion and pose changes of pollen images, and has better recognition effect than traditional methods.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128466058&origin=inward; http://dx.doi.org/10.1007/978-3-030-97124-3_40; https://link.springer.com/10.1007/978-3-030-97124-3_40; https://dx.doi.org/10.1007/978-3-030-97124-3_40; https://link.springer.com/chapter/10.1007/978-3-030-97124-3_40
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know