Modelling Eye-Gaze Movement Using Gaussian Auto-regression Hidden Markov
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 13151 LNAI, Page: 190-202
2022
- 1Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Modelling and prediction of eye gaze movement can be highly desirable in many real-world scenarios, e.g. human-machine interaction and human behavior analysis. This challenging area largely remains unexplored. In this study we tackle this challenge and propose a method to predict eye-gaze movement of human observers. Eye gaze trajectories are separated into three components, where two of them are considered as noise or bias, which can be removed from the trajectory data. So the remaining component, principle movement, can be modelled by a proposed new method, GAR HMM, which stands for Gaussian Auto-regression Hidden Markov Model based on AR HMM. Instead of the Beta Processes in AR HMM, GAR HMM introduces a Gaussian Process. So the model can predict the probability of occurrence of eye gaze in each region over time. By joining the predicted points together as a sequence, we can generate the eye gaze movement prediction as a time series. To evaluate GAR HMM we collected eye gaze movement data from over 20 volunteers. Experiments show that good prediction can be achieved by our proposed GAR HMM method. As a groundbreaking work GAR HMM can lead to much further extension to benefit real applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85127168391&origin=inward; http://dx.doi.org/10.1007/978-3-030-97546-3_16; https://link.springer.com/10.1007/978-3-030-97546-3_16; https://dx.doi.org/10.1007/978-3-030-97546-3_16; https://link.springer.com/chapter/10.1007/978-3-030-97546-3_16
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know