Classifying Biometric Data for Musical Interaction Within Virtual Reality
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 13221 LNCS, Page: 385-400
2022
- 3Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Since 2015, commercial gestural interfaces have widened accessibility for researchers and artists to use novel Electromyographic (EMG) biometric data. EMG data measures musclar amplitude and allows us to enhance Human-Computer Interaction (HCI) through providing natural gestural interaction with digital media. Virtual Reality (VR) is an immersive technology capable of simulating the real world and abstractions of it. However, current commercial VR technology is not equipped to process and use biometric information. Using biometrics within VR allows for better gestural detailing and use of complex custom gestures, such as those found within instrumental music performance, compared to using optical sensors for gesture recognition in current commercial VR equipment. However, EMG data is complex and machine learning must be used to employ it. This study uses a Myo armband to classify four custom gestures in Wekinator and observe their prediction accuracies and representations (including or omitting signal onset) to compose music within VR. Results show that specific regression and classification models, according to gesture representation type, are the most accurate when classifying four music gestures for advanced music HCI in VR. We apply and record our results, showing that EMG biometrics are promising for future interactive music composition systems in VR.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128941316&origin=inward; http://dx.doi.org/10.1007/978-3-031-03789-4_25; https://link.springer.com/10.1007/978-3-031-03789-4_25; https://dx.doi.org/10.1007/978-3-031-03789-4_25; https://link.springer.com/chapter/10.1007/978-3-031-03789-4_25
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know