An Improved Crow Search Algorithm with Grey Wolf Optimizer for High-Dimensional Optimization Problems
Communications in Computer and Information Science, ISSN: 1865-0937, Vol: 1572 CCIS, Page: 51-64
2022
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Conference Paper Description
Crow search algorithm (CSA) mainly solves optimization problems. In high-dimensional optimization problems, CSA searches with moves toward the wrong crows’ hiding position. Solving the problems of the CSA algorithm, this paper proposes an improved CSA with Grey Wolf Optimization (GWO) algorithms is called ICSAGWO for manipulating the high-dimensional optimization problem. The main idea is to hybrid both algorithms’ strengths that utilize the efficient exploitation ability of CSA with good performance in the exploration ability and convergence speed of GWO. By hybridizing, the authors employ an adaptive inertia weight to control exploitation and exploration capacities. ICSAGWO algorithm is tested on twenty-three benchmark functions with 30 to 500 dimensions and compared among other algorithms, such as GSA, WOA, GWO, CSA, etc. Experimental results of the proposed algorithm ICSAGWO obtain high performance in both unimodal and multimodal and not affecting the search performance even in high dimension data over other algorithms.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85130281820&origin=inward; http://dx.doi.org/10.1007/978-3-031-05767-0_5; https://link.springer.com/10.1007/978-3-031-05767-0_5; https://dx.doi.org/10.1007/978-3-031-05767-0_5; https://link.springer.com/chapter/10.1007/978-3-031-05767-0_5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know