Self-supervised Learning for COVID-19 Detection from Chest X-ray Images
Communications in Computer and Information Science, ISSN: 1865-0937, Vol: 1589 CCIS, Page: 78-89
2022
- 2Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Most of existing computer vision applications rely on models trained on supervised corpora, this is contradictory to what the world is seeing with the explosion of massive sets of unlabeled data. In the field of medical imaging for example, creating labels is extremely time-consuming because professionals should spend countless hours looking at images to manually annotate, segment, etc. Recently, several works are looking for solutions to the challenge of learning effective visual representations with no human supervision. In this work, we investigate the potential of using a self-supervised learning as a pretraining phase in improving the classification of radiographic images when the amount of available annotated data is small. To do that, we propose to use a self-supervised framework by pretraining a deep encoder with contrastive learning on a chest X-ray dataset using no labels at all, and then fine-tuning it using only few labeled data samples. We experimentally demonstrate that an unsupervised pretraining on unlabeled data is able to learn useful representation from Chest X-ray images, and only few labeled data samples are sufficient to reach the same accuracy of a supervised model learnt on the whole annotated dataset.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85133299165&origin=inward; http://dx.doi.org/10.1007/978-3-031-08277-1_7; https://link.springer.com/10.1007/978-3-031-08277-1_7; https://dx.doi.org/10.1007/978-3-031-08277-1_7; https://link.springer.com/chapter/10.1007/978-3-031-08277-1_7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know