ModDrop++: A Dynamic Filter Network with Intra-subject Co-training for Multiple Sclerosis Lesion Segmentation with Missing Modalities
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 13435 LNCS, Page: 444-453
2022
- 17Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Multiple Sclerosis (MS) is a chronic neuroinflammatory disease and multi-modality MRIs are routinely used to monitor MS lesions. Many automatic MS lesion segmentation models have been developed and have reached human-level performance. However, most established methods assume the MRI modalities used during training are also available during testing, which is not guaranteed in clinical practice. Previously, a training strategy termed Modality Dropout (ModDrop) has been applied to MS lesion segmentation to achieve the state-of-the-art performance with missing modality. In this paper, we present a novel method dubbed ModDrop++ to train a unified network adaptive to an arbitrary number of input MRI sequences. ModDrop++ upgrades the main idea of ModDrop in two key ways. First, we devise a plug-and-play dynamic head and adopt a filter scaling strategy to improve the expressiveness of the network. Second, we design a co-training strategy to leverage the intra-subject relation between full modality and missing modality. Specifically, the intra-subject co-training strategy aims to guide the dynamic head to generate similar feature representations between the full- and missing-modality data from the same subject. We use two public MS datasets to show the superiority of ModDrop++. Source code and trained models are available at https://github.com/han-liu/ModDropPlusPlus.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85139028710&origin=inward; http://dx.doi.org/10.1007/978-3-031-16443-9_43; https://link.springer.com/10.1007/978-3-031-16443-9_43; https://dx.doi.org/10.1007/978-3-031-16443-9_43; https://link.springer.com/chapter/10.1007/978-3-031-16443-9_43
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know