Calibration of Deep Medical Image Classifiers: An Empirical Comparison Using Dermatology and Histopathology Datasets
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 13563 LNCS, Page: 89-99
2022
- 2Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
Conference Paper Description
As deep learning classifiers become ever more widely deployed for medical image analysis tasks, issues of predictive calibration need to be addressed. Mis-calibration is the deviation between predictive probability (confidence) and classification correctness. Well-calibrated classifiers enable cost-sensitive and selective decision-making. This paper presents an empirical investigation of calibration methods on two medical image datasets (multi-class dermatology and binary histopathology image classification). We show the effect of temperature scaling with temperature optimized using various measures of calibration replacing the standard negative log-likelihood. We do so not only for networks trained using one-hot encoding and cross-entropy loss, but also using focal loss and label smoothing. We compare these with two Bayesian methods. Results suggest little or no advantage to the use of alternative calibration metrics for tuning temperature. Temperature scaling of networks trained using focal loss (with appropriate hyperparameters) provided strong results in terms of both calibration and accuracy across both datasets.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85138832787&origin=inward; http://dx.doi.org/10.1007/978-3-031-16749-2_9; https://link.springer.com/10.1007/978-3-031-16749-2_9; https://dx.doi.org/10.1007/978-3-031-16749-2_9; https://link.springer.com/chapter/10.1007/978-3-031-16749-2_9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know