On Quantum Ciphertext Indistinguishability, Recoverability, and OAEP
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 13512 LNCS, Page: 286-306
2022
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Conference Paper Description
The qINDqCPA security notion for public-key encryption schemes by Gagliardoni et al. (PQCrypto’21) models security against adversaries which are able to obtain ciphertexts in superposition. Defining this security notion requires a special type of quantum operator. Known constructions differ in which keys are necessary to construct this operator, depending on properties of the encryption scheme. We argue—for the typical setting of securing communication between Alice and Bob—that in order to apply the notion, the quantum operator should be realizable for challengers knowing only the public key. This is already known to be the case for a wide range of public-key encryption schemes, in particular, those exhibiting the so-called recoverability property which allows to recover the message from a ciphertext using the randomness instead of the secret key. The open question is whether there are real-world public-key encryption schemes for which the notion is not applicable, considering the aforementioned observation on the keys known by the challenger. We answer this question in the affirmative by showing that applying the qINDqCPA security notion to the OAEP construction requires the challenger to know the secret key. We conclude that the qINDqCPA security notion might need to be refined to eventually yield a universally applicable PKE notion of quantum security with a quantum indistinguishability phase.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85140463344&origin=inward; http://dx.doi.org/10.1007/978-3-031-17234-2_14; https://link.springer.com/10.1007/978-3-031-17234-2_14; https://dx.doi.org/10.1007/978-3-031-17234-2_14; https://link.springer.com/chapter/10.1007/978-3-031-17234-2_14
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know