Adversarial Partial Domain Adaptation by Cycle Inconsistency
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 13693 LNCS, Page: 530-548
2022
- 5Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Unsupervised partial domain adaptation (PDA) is a unsupervised domain adaptation problem which assumes that the source label space subsumes the target label space. A critical challenge of PDA is the negative transfer problem, which is triggered by learning to match the whole source and target domains. To mitigate negative transfer, we note a fact that, it is impossible for a source sample of outlier classes to find a target sample of the same category due to the absence of outlier classes in the target domain, while it is possible for a source sample of shared classes. Inspired by this fact, we exploit the cycle inconsistency, i.e., category discrepancy between the original features and features after cycle transformations, to distinguish outlier classes apart from shared classes in the source domain. Accordingly, we propose to filter out source samples of outlier classes by weight suppression and align the distributions of shared classes between the source and target domains by adversarial learning. To learn accurate weight assignment for filtering out outlier classes, we design cycle transformations based on domain prototypes and soft nearest neighbor, where center losses are introduced in individual domains to reduce the intra-class variation. Experiment results on three benchmark datasets demonstrate the effectiveness of our proposed method.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85142690521&origin=inward; http://dx.doi.org/10.1007/978-3-031-19827-4_31; https://link.springer.com/10.1007/978-3-031-19827-4_31; https://dx.doi.org/10.1007/978-3-031-19827-4_31; https://link.springer.com/chapter/10.1007/978-3-031-19827-4_31
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know