PlumX Metrics
Embed PlumX Metrics

Quanvolutional Neural Network Applied to MNIST

Studies in Computational Intelligence, ISSN: 1860-9503, Vol: 1096, Page: 43-67
2023
  • 3
    Citations
  • 0
    Usage
  • 5
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Book Chapter Description

At present, quantum computing and its applications are still in research. Nonetheless, the need to accelerate significantly computational processing that requires a considerable amount of time through classical computing for solving complex problems; are just a few reasons why quantum machine learning algorithms are being implemented in this field. Image classification is a frequent computer vision problems to solve using deep learning algorithms, evaluating their performance via well-known datasets. In this work, we compare the performance of the LeNet5 neural network with a quantum version of itself, in which a fixed non-trainable quantum circuit is used as a quanvolution kernel. The contribution of this work focuses on analyzing the disadvantages and advantages of a quanvolution kernel in image classification problems. The results show that using a quanvolutional layer achieves a favorable performance tradeoff over a classical CNN LeNet5 model. We used the MNIST hand-written digits dataset to perform the evaluation using well-known metrics such as accuracy, precision, F1 score, latency, throughput, and others.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know