Automated Analysis of Production Audit with Returnable Waste and Semi-products by Deep Simple Recurrent Network with Losses
Lecture Notes in Networks and Systems, ISSN: 2367-3389, Vol: 667 LNNS, Page: 143-157
2023
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Conference Paper Description
The article is devoted to the method creating problem for checked indicators estimate to automate the detection of anomalous data in the subject area of production audit, the transformations of which are represented by a mappings sequence. The data transformations model of production audit with returnable waste and semi-products based on a deep simple recurrent network with losses is offered. That allows to scale effectively the DLSRN model (to increase LSRN number without increase in training time of all DLSRN) in case of complications production. It allows to automate the process of the analysis and to use this model for intellectual technology of data analysis creation in the system of audit. The method of parametrical identification of a deep simple recurrent network with losses (DLSRN) reached further development by to use of the proposed one-step training of simple recurrent networks with losses (LSRN). This composition forms DLSRN and provides a representation of neural network weights in the form of raw materials shares, semi-products, finished goods, non-returnable and returnable waste. That allows increasing estimation accuracy by the model of data transformations of production audit with semi-products and returnable waste. It allows using the received estimates for forming the recommended solutions in audit DSS. The algorithm of one-step training of a simple recurrent network with losses (LSRN) due using of CUDA parallel processing technology of information is improved. That allows acceleration determination of values of LSRN neural network weights.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85164010631&origin=inward; http://dx.doi.org/10.1007/978-3-031-30251-0_12; https://link.springer.com/10.1007/978-3-031-30251-0_12; https://dx.doi.org/10.1007/978-3-031-30251-0_12; https://link.springer.com/chapter/10.1007/978-3-031-30251-0_12
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know