Management Supply Chains Electric Vehicle Battery Recycling
Green Energy and Technology, ISSN: 1865-3537, Page: 33-54
2023
- 5Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
The electric vehicle market—with an annual growth rate of more than 152% and reaching 75% of the market share of energy storage systems—poses qualitative and quantitative changes to the development of the market for electric vehicle battery recycling, where the recycling rate is only 7%. A related market for the production of electric vehicle batteries and the organization of logistics chains for the disposal of spent batteries is being formed, which functions with the state support of the electric vehicle industry. Recycling batteries takes place on an organizational and technological platform using pyrolysis, metallurgical and hydrometallurgical processes, and a combined variant of recycling electric vehicle batteries is also being developed. Such reorientation from simple processing is a consequence of environmental requirements and the economic need to offset the costs of rare and expensive metals partially. This study assesses the development of methods to use and recycle electric vehicle batteries under four scenarios, depending on state regulation and financing levels and on world exchange prices for non-ferrous and rare earth metals. The transition to new technological processing will allow repurposing up to 85% of the used metals. The problem of processing lithium batteries will become more acute in connection with the growing demand for lithium. Therefore, with a production volume of 536.71 trillion electric vehicles, markets will reach equilibrium where lithium will be obtained through the complete recycling of batteries.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85159775354&origin=inward; http://dx.doi.org/10.1007/978-3-031-30800-0_3; https://link.springer.com/10.1007/978-3-031-30800-0_3; https://dx.doi.org/10.1007/978-3-031-30800-0_3; https://link.springer.com/chapter/10.1007/978-3-031-30800-0_3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know