Predictive Energy Management for Battery Electric Vehicles with Hybrid Models
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, ISSN: 1867-822X, Vol: 486 LNICST, Page: 182-196
2023
- 1Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
This paper addresses the problem of predicting the energy consumption for the drivers of Battery electric vehicles (BEVs). Several external factors (e.g., weather) are shown to have huge impacts on the energy consumption of a vehicle besides the vehicle or powertrain dynamics. Thus, it is challenging to take all of those influencing variables into consideration. The proposed approach is based on a hybrid model which improves the prediction accuracy of energy consumption of BEVs. The novelty of this approach is to combine a physics-based simulation model, which captures the basic vehicle and powertrain dynamics, with a data-driven model. The latter accounts for other external influencing factors neglected by the physical simulation model, using machine learning techniques, such as generalized additive mixed models, random forests and boosting. The hybrid modeling method is evaluated with a real data set from TUM and the hybrid models were shown that decrease the average prediction error from 40% of the pure physics model to 10%.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161613982&origin=inward; http://dx.doi.org/10.1007/978-3-031-30855-0_13; https://link.springer.com/10.1007/978-3-031-30855-0_13; https://dx.doi.org/10.1007/978-3-031-30855-0_13; https://link.springer.com/chapter/10.1007/978-3-031-30855-0_13
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know