Exploring the Solution Space of Cancer Evolution Inference Frameworks for Single-Cell Sequencing Data
Communications in Computer and Information Science, ISSN: 1865-0937, Vol: 1780 CCIS, Page: 70-81
2023
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Conference Paper Description
In recent years, many algorithmic strategies have been developed to exploit single-cell mutational profiles generated via sequencing experiments of cancer samples and return reliable models of cancer evolution. Here, we introduce the COB-tree algorithm, which summarizes the solutions explored by state-of-the-art methods for clonal tree inference, to return a unique consensus optimum branching tree. The method proves to be highly effective in detecting pairwise temporal relations between genomic events, as demonstrated by extensive tests on simulated datasets. We also provide a new method to visualize and quantitatively inspect the solution space of the inference methods, via Principal Coordinate Analysis. Finally, the application of our method to a single-cell dataset of patient-derived melanoma xenografts shows significant differences between the COB-tree solution and the maximum likelihood ones.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161374928&origin=inward; http://dx.doi.org/10.1007/978-3-031-31183-3_6; https://link.springer.com/10.1007/978-3-031-31183-3_6; https://dx.doi.org/10.1007/978-3-031-31183-3_6; https://link.springer.com/chapter/10.1007/978-3-031-31183-3_6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know