Development of Multi-lingual Models for Detecting Hope Speech Texts from Social Media Comments
Communications in Computer and Information Science, ISSN: 1865-0937, Vol: 1802 CCIS, Page: 209-219
2023
- 9Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
Conference Paper Description
Comments on social media can be written in any number of languages, and many of them may also be written in languages with few resources. Hope Speech comments are kind expressions that support or critique a viewpoint without offending the individual or the community. On the other hand, non-hope speech is made up of harsh, mocking, or demotivating words. Since the Covid-19 pandemic, the need for positive reinforcement on the internet has made the field of natural language processing pay more attention to hope speech detection. Hope speech detection looks for words and phrases in social media comments that make people feel good. In this paper, an attempt to share content on these platforms that is positive and helpful is made. The models that are based on transformers to figure out whether a social media comment is “hope speech” or “non-hope speech” has been used. The objective of this work is to find the “hope speech” comments in YouTube datasets that were made as part of the “LT-EDI-ACL 2022: Hope Speech Detection for Equality, Diversity, and Inclusion” shared task. The shared task dataset was suggested in five different languages: Malayalam, Tamil, English, Spanish, and Kannada. The model based on a transformer was used as both a fine-tuner and an adapter transformer. In the end, adapters and fine-tuners do the same thing, but adapters add layers to the main model that has already been trained and freeze the weights of those layers. This study shows that models that are based on adapters do better than models that are fine-tuned. The proposed model classifies the Tamil dataset with an accuracy of 51.7% and the English dataset with an accuracy of 92.1%, which is the highest among all the datasets.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85173568616&origin=inward; http://dx.doi.org/10.1007/978-3-031-33231-9_14; https://link.springer.com/10.1007/978-3-031-33231-9_14; https://dx.doi.org/10.1007/978-3-031-33231-9_14; https://link.springer.com/chapter/10.1007/978-3-031-33231-9_14
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know