KDM5 Lysine Demethylases in Pathogenesis, from Basic Science Discovery to the Clinic
Advances in Experimental Medicine and Biology, ISSN: 2214-8019, Vol: 1433, Page: 113-137
2023
- 2Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
The histone lysine demethylase 5 (KDM5) family proteins are Fe and α-ketoglutarate-dependent dioxygenases, with jumonji C (JmjC) domain as their catalytic core and several plant homeodomains (PHDs) to bind different histone methylation marks. These enzymes are capable of demethylating tri-, di- and mono-methylated lysine 4 in histone H3 (H3K4me3/2/1), the key epigenetic marks for active chromatin. Thus, this H3K4 demethylase family plays critical roles in cell fate determination during development as well as malignant transformation. KDM5 demethylases have both oncogenic and tumor suppressive functions in a cancer type-dependent manner. In solid tumors, KDM5A/B are generally oncogenic, whereas KDM5C/D have tumor suppressive roles. Their involvement in de-differentiation, cancer metastasis, drug resistance, and tumor immunoevasion indicated that KDM5 family proteins are promising drug targets for cancer therapy. Significant efforts from both academia and industry have led to the development of potent and selective KDM5 inhibitors for preclinical experiments and phase I clinical trials. However, a better understanding of the roles of KDM5 demethylases in different physiological and pathological conditions is critical for further developing KDM5 modulators for clinical applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85172780036&origin=inward; http://dx.doi.org/10.1007/978-3-031-38176-8_6; http://www.ncbi.nlm.nih.gov/pubmed/37751138; https://link.springer.com/10.1007/978-3-031-38176-8_6; https://dx.doi.org/10.1007/978-3-031-38176-8_6; https://link.springer.com/chapter/10.1007/978-3-031-38176-8_6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know