A Multi-task Method for Immunofixation Electrophoresis Image Classification
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 14225 LNCS, Page: 148-158
2023
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Conference Paper Description
In the field of plasma cell disorders diagnosis, the detection of abnormal monoclonal (M) proteins through Immunofixation Electrophoresis (IFE) is a widely accepted practice. However, the classification of IFE images into nine distinct categories is a complex task due to the significant class imbalance problem. To address this challenge, a two-sub-task classification approach is proposed, which divides the classification task into the determination of severe and mild cases, followed by their combination to produce the final result. This strategy is based on the expert understanding that the nine classes are different combinations of severe and mild cases. Additionally, the examination of the dense band co-location on the electrophoresis lane and other lanes is crucial in the expert evaluation of the image class. To incorporate this expert knowledge into the model training, inner-task and inter-task regularization is introduced. The effectiveness of the proposed method is demonstrated through experiments conducted on approximately 15,000 IFE images, resulting in interpretable visualization outcomes that are in alignment with expert expectations. Codes are available at https://github.com/shiy19/IFE-classification.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85174734983&origin=inward; http://dx.doi.org/10.1007/978-3-031-43987-2_15; https://link.springer.com/10.1007/978-3-031-43987-2_15; https://dx.doi.org/10.1007/978-3-031-43987-2_15; https://link.springer.com/chapter/10.1007/978-3-031-43987-2_15
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know