XInsight: Revealing Model Insights for GNNs with Flow-Based Explanations
Communications in Computer and Information Science, ISSN: 1865-0937, Vol: 1902 CCIS, Page: 303-320
2023
- 1Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Progress in graph neural networks has grown rapidly in recent years, with many new developments in drug discovery, medical diagnosis, and recommender systems. While this progress is significant, many networks are ‘black boxes’ with little understanding of the ‘what’ exactly the network is learning. Many high-stakes applications, such as drug discovery, require human-intelligible explanations from the models so that users can recognize errors and discover new knowledge. Therefore, the development of explainable AI algorithms is essential for us to reap the benefits of AI. We propose an explainability algorithm for GNNs called eXplainable Insight (XInsight) that generates a distribution of model explanations using GFlowNets. Since GFlowNets generate objects with probabilities proportional to a reward, XInsight can generate a diverse set of explanations, compared to previous methods that only learn the maximum reward sample. We demonstrate XInsight by generating explanations for GNNs trained on two graph classification tasks: classifying mutagenic compounds with the MUTAG dataset and classifying acyclic graphs with a synthetic dataset that we have open-sourced. We show the utility of XInsight’s explanations by analyzing the generated compounds using QSAR modeling, and we find that XInsight generates compounds that cluster by lipophilicity, a known correlate of mutagenicity. Our results show that XInsight generates a distribution of explanations that uncovers the underlying relationships demonstrated by the model. They also highlight the importance of generating a diverse set of explanations, as it enables us to discover hidden relationships in the model and provides valuable guidance for further analysis.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85175964065&origin=inward; http://dx.doi.org/10.1007/978-3-031-44067-0_16; https://link.springer.com/10.1007/978-3-031-44067-0_16; https://dx.doi.org/10.1007/978-3-031-44067-0_16; https://link.springer.com/chapter/10.1007/978-3-031-44067-0_16
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know