Consistency Loss for Improved Colonoscopy Landmark Detection with Vision Transformers
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 14349 LNCS, Page: 124-133
2024
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Conference Paper Description
Colonoscopy is a procedure used to examine the colon and rectum for colorectal cancer or other abnormalities including polyps or diverticula. Apart from the actual diagnosis, manually processing the snapshots taken during the colonoscopy procedure (for medical record keeping) consumes a large amount of the clinician’s time. This can be automated through post-procedural machine learning based algorithms which classify anatomical landmarks in the colon. In this work, we have developed a pipeline for training vision-transformers for identifying anatomical landmarks, including appendiceal orifice, ileocecal valve/cecum landmark and rectum retroflection. To increase the accuracy of the model, we utilize a hybrid approach that combines algorithm-level and data-level techniques. We introduce a consistency loss to enhance model immunity to label inconsistencies, as well as a semantic non-landmark sampling technique aimed at increasing focus on colonic findings. For training and testing our pipeline, we have annotated 307 colonoscopy videos and 2363 snapshots with the assistance of several medical experts for enhanced reliability. The algorithm identifies landmarks with an accuracy of 92% on the test dataset.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85176003689&origin=inward; http://dx.doi.org/10.1007/978-3-031-45676-3_13; https://link.springer.com/10.1007/978-3-031-45676-3_13; https://dx.doi.org/10.1007/978-3-031-45676-3_13; https://link.springer.com/chapter/10.1007/978-3-031-45676-3_13
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know