PlumX Metrics
Embed PlumX Metrics

Empowering Machine Learning Development with Service-Oriented Computing Principles

Communications in Computer and Information Science, ISSN: 1865-0937, Vol: 1847 CCIS, Page: 24-44
2023
  • 1
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Conference Paper Description

Despite software industries’ successful utilization of Service-Oriented Computing (SOC) to streamline software development, machine learning (ML) development has yet to fully integrate these practices. This disparity can be attributed to multiple factors, such as the unique challenges inherent to ML development and the absence of a unified framework for incorporating services into this process. In this paper, we shed light on the disparities between services-oriented computing and machine learning development. We propose “Everything as a Module” (XaaM), a framework designed to encapsulate every ML artifacts including models, code, data, and configurations as individual modules, to bridge this gap. We propose a set of additional steps that need to be taken to empower machine learning development using services-oriented computing via an architecture that facilitates efficient management and orchestration of complex ML systems. By leveraging the best practices of services-oriented computing, we believe that machine learning development can achieve a higher level of maturity, improve the efficiency of the development process, and ultimately, facilitate the more effective creation of machine learning applications.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know