Soft Prompt Transfer for Zero-Shot and Few-Shot Learning in EHR Understanding
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 14178 LNAI, Page: 18-32
2023
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Conference Paper Description
Electronic Health Records (EHRs) are a rich source of information that can be leveraged for various medical applications, such as disease inference, treatment recommendation, and outcome analysis. However, the complexity and heterogeneity of EHR data, along with the limited availability of well-labeled samples, present significant challenges to the development of efficient and adaptable models for EHR tasks (such as rare or novel disease prediction or inference). In this paper, we propose Soft prompt transfer for Electronic Health Records (SptEHR), a novel pipeline designed to address these challenges. Specifically, SptEHR consists of three main stages: (1) self-supervised pre-training on raw EHR data for an EHR-centric transformer-based foundation model, (2) supervised multi-task continual learning from existing well-labeled tasks to further refine the foundation model and learn transferable task-specific soft prompts, and (3) further improve zero-shot and few-shot ability via prompt transfer. Specifically, the transformer-based foundation model learned from stage one captures domain-specific knowledge. Then the multi-task continual training in stage two improves model adaptability and performance on EHR tasks. Finally, stage three leverages soft prompt transfer which is based on the similarity between the new and the existing tasks, to effectively address new tasks without requiring additional/extensive training. The effectiveness of the SptEHR has been validated on the benchmark dataset - MIMIC-III.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85177475322&origin=inward; http://dx.doi.org/10.1007/978-3-031-46671-7_2; https://link.springer.com/10.1007/978-3-031-46671-7_2; https://dx.doi.org/10.1007/978-3-031-46671-7_2; https://link.springer.com/chapter/10.1007/978-3-031-46671-7_2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know