A Novel for Seizure Prediction Using Artificial Intelligent and Electroencephalography
Lecture Notes in Networks and Systems, ISSN: 2367-3389, Vol: 837 LNNS, Page: 202-209
2024
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Seizure prediction is critical in effectively managing epilepsy, a chronic neurological disorder characterized by sudden abnormal brain activity. This study proposes a Long Short-Term Memory (LSTM) neural network deep learning model for seizure prediction using non-invasive scalp Electroencephalography (EEG) recordings. The LSTM model is well-suited for time series analysis, making it an ideal candidate for detecting patterns in EEG data. The model is designed to distinguish between ictal and interictal states, accurately predicting the onset of seizures with high sensitivity and minimal false alarms. The results demonstrate the effectiveness of the proposed model, achieving accuracy rates ranging from 99.07 to 99.95% and a sensitivity of 1, indicating that all seizure states are correctly predicted. The model's low false positive and false negative rates validate its potential for early and accurate seizure prediction. Future works are presented at the end of this paper to enhance the model's performance and translate it into practical clinical applications. The proposed LSTM model holds promising prospects for timely seizure warnings and improving the quality of life for patients with epilepsy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85188472695&origin=inward; http://dx.doi.org/10.1007/978-3-031-48465-0_27; https://link.springer.com/10.1007/978-3-031-48465-0_27; https://dx.doi.org/10.1007/978-3-031-48465-0_27; https://link.springer.com/chapter/10.1007/978-3-031-48465-0_27
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know