Vision Transformers for Breast Cancer Histology Image Classification
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 14366, Page: 15-26
2024
- 2Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
We propose a self-attention Vision Transformer (ViT) model tailored for breast cancer histology image classification. The proposed architecture uses a stack of transformer layers, with each layer consisting of a multi-head self-attention mechanism and a position-wise feed-forward network, and it is trained with different strategies and configurations, including pretraining, resize dimension, data augmentation, patch overlap, and patch size, to investigate their impact on performance on the histology image classification task. Experimental results show that pretraining on ImageNet and using geometric and color data augmentation techniques significantly improve the model’s accuracy on the task. Additionally, a patch size of 16 × 16 and no patch overlap were found to be optimal for this task. These findings provide valuable insights for the design of future ViT-based models for similar image classification tasks.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85184102214&origin=inward; http://dx.doi.org/10.1007/978-3-031-51026-7_2; https://link.springer.com/10.1007/978-3-031-51026-7_2; https://dx.doi.org/10.1007/978-3-031-51026-7_2; https://link.springer.com/chapter/10.1007/978-3-031-51026-7_2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know