From Concept to Prototype: Developing and Testing GAAINet for Industrial IoT Intrusion Detection
IFIP Advances in Information and Communication Technology, ISSN: 1868-422X, Vol: 703 IFIPAICT, Page: 453-468
2024
- 1Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Intrusion detection is a growing area of concern in Industrial Internet of Things (IIoT) systems. This is largely due to the fact that IIoT systems are typically used to augment the operation of Critical Information Infrastructures, the compromise of which could result in severe consequences for industries or even nations. In addition, IIoT is a relatively new technological development which introduces new vulnerabilities. Machine learning methods are increasingly being applied to IIoT intrusion detection. However, the data imbalance prevalent in IIoT intrusion detection datasets can limit the performance of intrusion detection algorithms due to the significantly smaller amount of attack samples. As such, generative models have been applied to address the data imbalance problem by modelling distributions of intrusion detection datasets in order to generate synthetic attack samples. Current work presents the implementation of a Generative Adversarial Artificial Immune Network (GAAINet) as an approach for addressing data imbalance IIoT intrusion detection. Experimental results show that GAAINet could generate synthetic attack samples for the WUSTL-IIoT-2021 dataset. The resulting balanced dataset was used to train an Artificial Immune Network classifier, which achieved a detection accuracy of 99.13% for binary classification and 98.87% for multi-class classification.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85190640857&origin=inward; http://dx.doi.org/10.1007/978-3-031-57808-3_33; https://link.springer.com/10.1007/978-3-031-57808-3_33; https://dx.doi.org/10.1007/978-3-031-57808-3_33; https://link.springer.com/chapter/10.1007/978-3-031-57808-3_33
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know