Facilitates Chromatin Transcription in Breast and Other Cancers
Advances in Experimental Medicine and Biology, ISSN: 2214-8019, Vol: 1465, Page: 71-88
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Eukaryotic genome is packaged into chromatin. Thus, transcription takes place in the context of chromatin that is an array of nucleosomes. Nucleosome poses a barrier for the gene regulatory factors to access DNA for transcription to occur. Fortunately, eukaryotic cells have evolved mechanisms of nucleosomal disassembly and reassembly for transcription through chromatin. Such nucleosomal alteration in controlling transcription is governed by a heterodimeric chromatin remodeling factor, FACT (facilitates chromatin transcription), which is evolutionarily conserved from yeast to humans. FACT facilitates chromatin disassembly at the promoter and reassembly at the open reading frame. Such chromatin regulatory functions of FACT promote transcription. Likewise, other DNA transacting processes such as DNA replication and repair are also regulated by FACT via modulation of chromatin dynamics. Intriguingly, FACT is found to be upregulated in breast and other cancers with oncogenic potential. Thus, FACT and/or its upstream regulatory pathways/factors can be employed for cancer prognosis and targeted for an effective cancer therapy. Further, FACT is found to be downregulated and/or mutated in various cancers including breast cancer. Here, we describe FACT and its involvement in breast and other cancers with prognostic and targeted therapeutic implications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85210426121&origin=inward; http://dx.doi.org/10.1007/978-3-031-66686-5_5; http://www.ncbi.nlm.nih.gov/pubmed/39586994; https://link.springer.com/10.1007/978-3-031-66686-5_5; https://dx.doi.org/10.1007/978-3-031-66686-5_5; https://link.springer.com/chapter/10.1007/978-3-031-66686-5_5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know