Modelling and Controlling System Dynamics of the Brain: An Intersection of Machine Learning and Control Theory
Advances in Neurobiology, ISSN: 2190-5223, Vol: 41, Page: 63-87
2024
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Book Chapter Description
The human brain, as a complex system, has long captivated multidisciplinary researchers aiming to decode its intricate structure and function. This intricate network has driven scientific pursuits to advance our understanding of cognition, behavior, and neurological disorders by delving into the complex mechanisms underlying brain function and dysfunction. Modelling brain dynamics using machine learning techniques deepens our comprehension of brain dynamics from a computational perspective. These computational models allow researchers to simulate and analyze neural interactions, facilitating the identification of dysfunctions in connectivity or activity patterns. Additionally, the trained dynamical system, serving as a surrogate model, optimizes neurostimulation strategies under the guidelines of control theory. In this chapter, we discuss the recent studies on modelling and controlling brain dynamics at the intersection of machine learning and control theory, providing a framework to understand and improve cognitive function, and treat neurological and psychiatric disorders.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85210424519&origin=inward; http://dx.doi.org/10.1007/978-3-031-69188-1_3; http://www.ncbi.nlm.nih.gov/pubmed/39589710; https://link.springer.com/10.1007/978-3-031-69188-1_3; https://dx.doi.org/10.1007/978-3-031-69188-1_3; https://link.springer.com/chapter/10.1007/978-3-031-69188-1_3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know