OSSA Scheduler: Opposition-Based Learning Salp Swarm Algorithm for Task Scheduling in Cloud Computing
Lecture Notes in Networks and Systems, ISSN: 2367-3389, Vol: 863 LNNS, Page: 237-248
2024
- 1Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In cloud computing, task scheduling has a direct influence on service quality. Task scheduling means allocating tasks to available resources based on user specifications. This NP-hard problem seeks to develop an optimal scheduler for resource allocation to complete tasks in the shortest amount of time achievable. Several methods have been presented to tackle the task scheduling issue. In this study, an Opposition-based Learning Salp Swarm Algorithm (OSSA) to address task scheduling issues. The initial population phase of the proposed OSSA scheduler for task scheduling in a cloud computing environment uses Opposition-Based Learning (OBL) to minimize execution time. OBL generates a diversified and high-quality initial population, improving the optimization process's overall performance. The paper compares the proposed OSSA algorithm to various metaheuristic algorithms, like the standard Salp Swarm Algorithm (SSA), Differential Evolution (DE) and Sine Cosine Algorithm (SCA). The results shows that the OSSA algorithm can solve the task scheduling problem more efficiently and achieve superior solutions for minimizing the makespan.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85207536248&origin=inward; http://dx.doi.org/10.1007/978-3-031-72171-7_24; https://link.springer.com/10.1007/978-3-031-72171-7_24; https://dx.doi.org/10.1007/978-3-031-72171-7_24; https://link.springer.com/chapter/10.1007/978-3-031-72171-7_24
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know