Noise robustness analysis of point cloud descriptors
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 8192 LNCS, Page: 68-79
2013
- 5Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In this paper, we investigate the effect of noise on 3D point cloud descriptors. Various types of point cloud descriptors have been introduced in the recent years due to advances in computing power, which makes processing point cloud data more feasible. Most of these descriptors describe the orientation difference between pairs of 3D points in the object and represent these differences in a histogram. Earlier studies dealt with the performances of different point cloud descriptors; however, no study has ever discussed the effect of noise on the descriptors performances. This paper presents a comparison of performance for nine different local and global descriptors amidst 10 varying levels of Gaussian and impulse noises added to the point cloud data. The study showed that 3D descriptors are more sensitive to Gaussian noise compared to impulse noise. Surface normal based descriptors are sensitive to Gaussian noise but robust to impulse noise. While descriptors which are based on point's accumulation in a spherical grid are more robust to Gaussian noise but sensitive to impulse noise. Among global descriptors, view point features histogram (VFH) descriptor gives good compromise between accuracy, stability and computational complexity against both Gaussian and impulse noises. SHOT (signature of histogram of orientations) descriptor is the best among the local descriptors and it has good performance for both Gaussian and impulse noises. © 2013 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84890866732&origin=inward; http://dx.doi.org/10.1007/978-3-319-02895-8_7; http://link.springer.com/10.1007/978-3-319-02895-8_7; http://link.springer.com/content/pdf/10.1007/978-3-319-02895-8_7; https://dx.doi.org/10.1007/978-3-319-02895-8_7; https://link.springer.com/chapter/10.1007/978-3-319-02895-8_7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know