Effect of Temperature on Mechanical Property Degradation of Polymeric Materials
Conference Proceedings of the Society for Experimental Mechanics Series, ISSN: 2191-5652, Page: 41-47
2015
- 3Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Proton Electrolyte Membrane (PEM) fuel cell is a promising energy source because of its high efficiency and zero emission. One of the most important unresolved problems of PEM fuel cells today is the durability issue of its components. For example, the polymeric gasket material of PEM fuel cell must be durable enough to hold the liquid and gas inside the fuel cell channel, as its sealing force decreases gradually with time and also changes with temperature. Liquid Silicone Rubber (LSR) is commonly used as gasket or seal material in many industrial applications including PEM fuel cells. This paper discusses the compression stress relaxation of LSR under temperature cycling, which is to simulate the actual fuel cell operation. It is found that (a) in addition to stress relaxation, thermal expansion or contraction of the material contributes the most in the observed stress variation during temperature change, and (b) the stiffness of LSR appears to change according to temperature history, and (c) the Maxwell stress relaxation model can be used to predict the sealing force only after a correction of the change of material stiffness is implemented into the model.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85063456914&origin=inward; http://dx.doi.org/10.1007/978-3-319-06980-7_5; https://link.springer.com/10.1007/978-3-319-06980-7_5; https://dx.doi.org/10.1007/978-3-319-06980-7_5; https://link.springer.com/chapter/10.1007/978-3-319-06980-7_5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know