Particle swarm methods
Handbook of Heuristics, Vol: 1-2, Page: 639-685
2018
- 2Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Particle swarm optimization has gained increasing popularity in the past 15 years. Its effectiveness and efficiency has rendered it a valuable metaheuristic approach in various scientific fields where complex optimization problems appear. Its simplicity has made it accessible to the non-expert researchers, while the potential for easy adaptation of operators and integration of new procedures allows its application on a wide variety of problems with diverse characteristics. Additionally, its inherent decentralized nature allows easy parallelization, taking advantage of modern high-performance computer systems. The present work exposes the basic concepts of particle swarm optimization and presents a number of popular variants that opened new research directions by introducing novel ideas in the original model of the algorithm. The focus is placed on presenting the essential information of the algorithms rather than covering all the details. Also, a large number of references and sources is provided for further inquiry. Thus, the present text can serve as a starting point for researchers interested in the development and application of particle swarm optimization and its variants.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85063050716&origin=inward; http://dx.doi.org/10.1007/978-3-319-07124-4_22; http://link.springer.com/10.1007/978-3-319-07124-4_22; https://dx.doi.org/10.1007/978-3-319-07124-4_22; https://link.springer.com/referenceworkentry/10.1007/978-3-319-07124-4_22
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know