PlumX Metrics
Embed PlumX Metrics

Diamond nanowires: Fabrication, structure, properties and applications

Topics in Applied Physics, ISSN: 1437-0859, Vol: 121, Page: 123-164
2015
  • 4
    Citations
  • 0
    Usage
  • 15
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    4
    • Citation Indexes
      4
  • Captures
    15

Book Chapter Description

Diamond is a wide band gap semiconductor exhibiting a combination of superior properties, such as negative electron affinity, chemical inertness, high Young’s modulus, the highest hardness and room-temperature thermal conductivity, etc. It is possible to control and enhance the fundamental properties of diamond by fabricating 1D diamond nanowires, due to the giant surface-to-volume ratio enhancements of 1D nanowires. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. In this chapter, we present a comprehensive, up-to-date review for the diamond nanowires, wherein we will give a discussing for their synthesis along with their structures, properties and applications.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know