Effective drusen segmentation from fundus images for age-related macular degeneration screening
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 9005, Page: 483-498
2015
- 4Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Automatic screening of Age-related Macular Degeneration (AMD) is important for both patients and ophthalmologists. The major sign of contracting AMD at the early stage is the appearance of drusen, which are the accumulation of extracellular material and appear as yellowwhite spots on the retina. In this paper, we propose an effective approach for drusen segmentation towards AMD screening. The major novelty of the proposed approach is that it employs an effective way to train a drusen classifier from a weakly labeled dataset, meaning only the existence of drusen is known but not the exact locations or boundaries. We achieve this by employing Multiple Instance Learning (MIL). Moreover, our proposed approach also tracks the drusen boundaries by using Growcut, with the output of MIL as initial seeds. Experiments on 350 fundus images with 96 of them with AMD demonstrates that our approach outperforms the state-of-the-art methods on the task of early AMD detection and achieves satisfying performance on the task of drusen segmentation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84983666212&origin=inward; http://dx.doi.org/10.1007/978-3-319-16811-1_32; https://link.springer.com/10.1007/978-3-319-16811-1_32; https://dx.doi.org/10.1007/978-3-319-16811-1_32; https://link.springer.com/chapter/10.1007/978-3-319-16811-1_32
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know