Calculation of textual similarity using semantic relatedness functions
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 9042, Page: 516-524
2015
- 1Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Semantic similarity between two sentences is concerned with measuring how much two sentences share the same or related meaning. Two methods in the literature for measuring sentence similarity are cosine similarity and overall similarity. In this work we investigate if it is possible to improve the performance of these methods by integrating different word level semantic relatedness methods. Four different word relatedness methods are compared using four different data sets compiled from different domains, providing a testbed formed of various range of writing expressions to challenge the selected methods. Results show that the use of corpus-based word semantic similarity function has significantly outperformed that of WordNet-based word semantic similarity function in sentence similarity methods. Moreover, we propose a new sentence similarity measure method by modifying an existing method which incorporates word order and lexical similarity called as overall similarity. Furthermore, the results show that the proposed method has significantly improved the performance of the overall method. All the selected methods are tested and compared with other state-of-the-art methods
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84942532238&origin=inward; http://dx.doi.org/10.1007/978-3-319-18117-2_38; https://link.springer.com/10.1007/978-3-319-18117-2_38; https://dx.doi.org/10.1007/978-3-319-18117-2_38; https://link.springer.com/chapter/10.1007/978-3-319-18117-2_38
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know