Effect of projectile shape and velocity on crater damage
Astrophysics and Space Science Proceedings, ISSN: 1570-6605, Vol: 47, Page: 329-336
2017
- 1Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Conference Paper Description
The shape of the particles in ground simulations of space debris is mostly assumed as spherical particles. However, the number of flat particles in space debris is much higher than of spherical ones. Therefore, flat-shaped particles pose more danger to orbiting crafts. This paper describes a study that employs the laser-driven flyer technique to produce flat-shaped projectiles of different aspect ratio to impact on quartz glass (usually used as window in spacecraft) and studies the influence of the projectile boundary geometries on damage morphologies. The results show that the impact craters due to spherical particles and to flat ones are similar in shape but differ in depth of penetration and scatter. The equation for spherical debris was modified to describe the relationship between diameters of the crater and the flat projectile.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85019719991&origin=inward; http://dx.doi.org/10.1007/978-3-319-19309-0_33; http://link.springer.com/10.1007/978-3-319-19309-0_33; http://link.springer.com/content/pdf/10.1007/978-3-319-19309-0_33; https://dx.doi.org/10.1007/978-3-319-19309-0_33; https://link.springer.com/chapter/10.1007/978-3-319-19309-0_33
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know