Dynamic flow response of rigid polymer foam subjected to direct impact
Conference Proceedings of the Society for Experimental Mechanics Series, ISSN: 2191-5652, Vol: 85, Page: 163-170
2016
- 3Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In this work, the dynamic response of closed-cell PMDI foam specimens with different initial densities subjected to direct impact loading was investigated using a shock-tube apparatus and digital image correlation. Cylindrical foam specimens with different densities were affixed on a rigid frame on one side while the impact load was applied to the other side. The full-field deformation of the polymeric foam specimen during the loading process was captured using stereovision high speed camera system. The load was measured using quartz impact force sensors located between the rigid frame and the specimen, while the full-field displacement and strain distributions were obtained using 3D DIC. A simple one-dimensional model was also proposed to calculate the change of specimen density at any given time during the deformation. The inertia stresses developed during high strain rate deformation were determined using the instantaneous density and the full-field acceleration distribution obtained from the displacement field measured by DIC. By using the load cell data, the calculated inertia stresses and the strain components obtained from DIC, the full field stress-strain distribution over the entire region of interest was extracted. The average stress-strain response of the specimens was also presented as a function of foam density.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84951957020&origin=inward; http://dx.doi.org/10.1007/978-3-319-22452-7_23; https://link.springer.com/10.1007/978-3-319-22452-7_23; https://dx.doi.org/10.1007/978-3-319-22452-7_23; https://link.springer.com/chapter/10.1007/978-3-319-22452-7_23
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know